
CHAPTER 3.4 AND 3.5
Sara Gestrelius

3.4 OTHER EVOLUTIONARY

ALGORITHMS

Estimation of Distribution algorithms

Differential Evolution

Coevolutionary algorithms

Cultural algorithms

LAST TIME: EVOLUTIONARY

ALGORITHMS

Population Parents

Offspring

Selection

Reproduction:

recombination,

mutation.
Replacement

Initialise

Stopping

criteria

Objective

function

ESTIMATION OF DISTRIBUTION

ALGORITHMS

Main idea
Variable interaction
Example: PBIL

ESTIMATION OF DISTRIBUTION ALGORITHMS

MAIN IDEA
• The population is represented by a probability distribution that is used to

generate new individuals.

• Not yet competitive compared to more traditional metaheuristics.

0 0 1 0 1 0 1

1 1 0 0 0 0 0

1 0 0 0 1 1 1

1 0 0 0 1 1 0

0 1 0 0 1 1 0

Population of

individuals

P = 0.6 0.4 0.2 0.0 0.8 0.6 0.4

Probability distribution

Example: A population of binary arrays

can be represented by an array of

probabilities that that entry is a 1.

ESTIMATION OF DISTRIBUTION ALGORITHMS

MAIN IDEA

Algorithm 3.4 Template of the EDA algorithm

t = 1;

Generate randomly a population of n individuals;

Initialise a probability model Q(x);

While Termination criteria are not met Do

Create a population of n individuals by sampling from Q(x);

Evaluate the objective function for each individual;

Select m individuals according to a selection methods;

Update the probabilistic model Q(x) using selected population and f() values;

t=t+1

End While

Output: Best found solution or set of solutions.

Probability

model

Offspring

Generate

Select and update

Initialise

Stopping

criteria

Objective

function

ESTIMATION OF DISTRIBUTION ALGORITHMS

MAIN IDEA

Sometimes the variables interact. Then this should be
included in the probability model.

1. Univariate EDA: No interaction between the problem
variables are taken into account.

2. Bivariate EDA: Interactions between two variables defines
the probability model

3. Multivariate EDA: Interactions between many variables
defined the probability model.

ESTIMATION OF DISTRIBUTION ALGORITHMS

VARIABLE INTERACTION

Algorithm 3.5 Template of the PBIL algorithm

Initial distribution D=(0.5, … , 0.5);

Repeat

Repeat /*Generate population P of size n*/

Repeat /*For every entry i in D*/

r=Uniform[0,1]

If r<Di Then Xi = 1 Else Xi = 0

Until i=|D|

Until n

Evaluate and sort the population P; /*Find best offspring*/

Update the distribution D=(1-α)D+αXbest

Until Stopping Criteria

ESTIMATION OF DISTRIBUTION ALGORITHMS

EXAMPLE: POPULATIONBASED

INCREMENTAL LEARNING, PBIL

DIFFERENTIAL EVOLUTION

Main idea
Example: DE/rand/1/bin
Repair strategies
Tuning

• When creating a new offspring: Use one main parent and a group of “other
parents”. For each entry in the main parent vector, randomly choose whether
to used main parent entry or new entry generated by the “other parents”.

• Very successful for continuous optimisation. All entries are bounded: lj ≤xij ≤uj

DIFFERENTIAL EVOLUTION

MAIN IDEA

Main Parent Green = other parents

r3 +F.(r1-r2)1

2

3

Population
Parent

Offspring

Selection

Recombination

Replacement

Initialise

Stopping

criteria

Objective

function

Parents

DIFFERENTIAL EVOLUTION

MAIN IDEA
E.g. Go

through all

individuals

Sample

DIFFERENTIAL EVOLUTION

EXAMPLE: DE/RAND/BIN
Algorithm 3.8 Template of the DE/rand/1/bin algorithm

Input: Parameters F (scaling factor) and CR (crossover constant).

Initialise the population (uniform random distribution);

Repeat

For (i=1, i ≤ k, i++) Do /*Each individual*/

/*Mutate and recombine*/

jrand =int(randi[0,1]*D)+1;

For (j=1, j ≤ D, j++) Do

If (randi[0,1]<CR) or (j=jrand)Then

uij = xr3j +F.(xr1j -.(xr2j)

Else

uij = xij

End For

/Replace/

If f(ui(t+1)) ≤f(ui(t))

xi(t+1) = ui(t+1)

Else

xi(t+1) = xi(t)

End For

Until Stopping Criteria

Output: Best population or solution found.

• Extreme strategies:

1. Set variable to violated bound

2. Randomly reinitialise value

• Intermediate strategy:

1. Set to midway between old value and violated

bound.

DIFFERENTIAL EVOLUTION

REPAIR STRATEGY

• To get convergence:
• Increase number of parents, decrease F.

• To increase convergence speed (and decrease robustness):
• Increase CR

• DE much more sensitive to the value of F than the value of CR.

• From book: NP=10 times number of decision variables, CR=0.9,
F=0.8

DIFFERENTIAL EVOLUTION

TUNING

COEVOLUTIONARY ALGORITHMS

Main idea

The Rosenbrock function: competetive coevolution
The Rosenbrock function: cooperative coevolution

• Cooperative or competitive strategy involving

different populations. The fitness of an individual in

a given population depends on the fitness of

individuals in other populations.

COEVOLUTION ALGORITHMS

MAIN IDEA

Population Representatives

Offspring

Selection

Competition

Cooperation

Replacement

Initialise

Stopping

criteria

Population

obj. function

COEVOLUTION ALGORITHMS

MAIN IDEA

Population
Population

Representatives
Representatives

Global obj.

function

Population

obj. function
Population

obj. function

Offspring
Offspring

𝑓 𝑥 =
𝑖=1

𝑛

(100 𝑥𝑖 −𝑥𝑖+1
2 + 1 − 𝑥𝑖

2) 𝑥𝜖ℝ

COEVOLUTION ALGORITHMS

THE ROSENBROCK FUNCTION

• n populations with the individuals 𝑥𝑖
• Objective functions 𝑓𝑖(𝑥𝑖; 𝑥𝑖+1)
• Interaction/communication graph 𝐺𝑐𝑜𝑚𝑚 defined by relations

between subcomponents.

𝑓 𝑥 =
𝑖=1

𝑛

(100 𝑥𝑖 −𝑥𝑖+1
2 + 1 − 𝑥𝑖

2) 𝑥𝜖ℝ

COEVOLUTION ALGORITHMS

THE ROSENBROCK FUNCTION - COMPETITIVE

• Nodes 𝑥𝑖 interact with nodes 𝑥𝑖+1.
• The coevlolving populations compete to minimize their local function.

COEVOLUTION ALGORITHMS

THE ROSENBROCK FUNCTION - COMPETITIVE

Species 1

Population

Representatives

Species 2

Population

Representatives

Species n

Population

Representatives

𝑓 𝑥 =
𝑖=1

𝑛

(100 𝑥𝑖 −𝑥𝑖+1
2 + 1 − 𝑥𝑖

2) 𝑥𝜖ℝ

COEVOLUTION ALGORITHMS

THE ROSENBROCK FUNCTION - COOPERATIVE

• Interaction graph fully connected.

Algorithm
1. Initialize by randomly connecting individuals of populations and find a best solution

𝐼𝑖
𝑏𝑒𝑠𝑡 for each population.

2. Repeat:

1. For each population: combine each individual with best individuals of all other

populations. Find new best solution in active population.

2. For each population: match best individual with randomly selected individuals

from other populations.

3. For each population: Choose the best out of the two solutions.

3. Construct complete solution from all best individuals from each population.

COEVOLUTION ALGORITHMS

THE ROSENBROCK FUNCTION - COOPERATIVE

Species 1

Population

Representatives

Species 2

Population

Representatives

Species n

Population

Representatives

Assembly
Individual

Fitness evaluation

Frozen populations

CULTURAL ALGORITHMS

Main idea

• Two main elements:

1. A population space at the mico-evolutionary level

2. A belief space at the macro-evolutionary level

• Good when solutions require extensive domain

knowledge

CULTURAL ALGORITHMS

MAIN IDEA

CULTURAL ALGORITHMS

MAIN IDEA

Belief space

Adjust knowledge:

normative, domain

specific, situational,

temporal, spatial

Population

Knowledge

Vote

Promote

Influence evolution

Evolution of the population

(e.g. evolutionary algorithm)

Symbolic resoning:

• Logic- and rule based reasoning models

• Schemata

• Graphical models

• Semantic networks

• Version spaces

CULTURAL ALGORITHMS

MAIN IDEA

Algorithm 3.9 Template of the cultural algorithm

Initialise the population Pop(0);

Initialise the belief BLF(0);

t = 0;

Repeat

Evaluate the population Pop(t);

Adjust(BLF(t), Accept(Pop(t)));

Evolve(Pop(t+1), Influence(BLF(t)));

t=t+1

Until Stopping criteria

Output: Best found solution or set of solutions.

3.4 SCATTER SEARCH

Scatter search

Path relinking

SCATTER SEARCH

Main idea

Components

• Very many parents (aka reference set). Also,

many parents can be used to generate new

solutions.

• F. Glover. Heuristics for integer programming

using surrogate constraints. Decision Sciences,

8:156-166, 1977.

SCATTER SEARCH

MAIN IDEA

SCATTER SEARCH

MAIN IDEA

Initial population

Improved

population

Reference set Subsets

Generated

solutions
Improved generated

solutions

Subset generation

method

Solution

combination

method

Reference set

update method

Improvement

method

Generate

reference

set

Create initial population

(quality, diversity)

Improve the

initial population

SCATTER SEARCH

COMPONENTS Greedy procedures are

applied to diversify the

search while selecting

high-quality solutions.

Any S-metaheuristic,

normally local search.

Initial population

Improved

population

Reference set Subsets

Generated

solutions

Subset generation

method

Solution

combination

method

Reference set

update method

Improvement

method

Generate

reference

set

Create initial population

(quality, diversity)

Improve the

initial population

Improved generated

solutions

SCATTER SEARCH

COMPONENTS

Quality and diversity: Select

RefSet1 with the best

objective function and

RefSet2 with best diversity.

Initial population

Improved

population

Reference set Subsets

Generated

solutions

Subset generation

method

Solution

combination

method

Reference set

update method

Improvement

method

Generate

reference

set

Create initial population

(quality, diversity)

Improve the

initial population

Improved generated

solutions

SCATTER SEARCH

MAIN IDEA Usually selects all the

subsets of fixed size r (often

r=2). It’s a deterministic

operator.

Initial population

Improved

population

Reference set Subsets

Generated

solutions

Subset generation

method

Solution

combination

method

Reference set

update method

Improvement

method

Generate

reference

set

Create initial population

(quality, diversity)

Improve the

initial population

Improved generated

solutions

SCATTER SEARCH

MAIN IDEA
In the example it’s a cross-

over method. Pretty much

anything that can take a

subset and turn it into a

solution.

Initial population

Improved

population

Reference set Subsets

Generated

solutions

Subset generation

method

Solution

combination

method

Reference set

update method

Improvement

method

Generate

reference

set

Create initial population

(quality, diversity)

Improve the

initial population

Improved generated

solutions

SCATTER SEARCH

MAIN IDEA

In the example it’s

a local search

method.

Initial population

Improved

population

Reference set Subsets

Generated

solutions

Subset generation

method

Solution

combination

method

Reference set

update method

Improvement

method

Generate

reference

set

Create initial population

(quality, diversity)

Improve the

initial population

Improved generated

solutions

Improved generated

solutions

SCATTER SEARCH

MAIN IDEA

Initial population

Improved

population

Reference set Subsets

Generated

solutions

Subset generation

method

Solution

combination

method

Reference set

update method

Improvement

method

Generate

reference

set

Create initial population

(quality, diversity)

Improve the

initial population

In example: use same method as in

“Generate reference set”. Use

solutions in Reference set and

Improved generated solutions.

PATH RELINKING

Main idea

Components

Directions

Example: Binary search space

• Find a path between two elite solutions (s and t),

return best solution on this path.

• The solutions on the path will generally share

attributes with s and t.

PATH RELINKING

MAIN IDEA

PATH RELINKING

MAIN IDEA

Algorithm 3.11 Template of the basic PR algorithm

InputStarting solution s and target solution t

x=s;

While dist(x,t)≠0 do

Find the best move m which decreases dist(x+m,t);

x=x+m; /*Apply the move m to the solution x*/

Output: Best solution found in the trajectory between s and t.

PATH RELINKING

COMPONENTS

Algorithm 3.11 Template of the basic PR algorithm

InputStarting solution s and target solution t

x=s;

While dist(x,t)≠0 do

Find the best move m which decreases dist(x+m,t);

x=x+m; /*Apply the move m to the solution x*/

Output: Best solution found in the trajectory between s and t.

• Point with minimum distance to t.

• Point with best/worst objective function value.

• Use history of search (tabu search).

PATH RELINKING

COMPONENTS

Algorithm 3.11 Template of the basic PR algorithm

InputStarting solution s and target solution t

x=s;

While dist(x,t)≠0 do

Find the best move m which decreases dist(x+m,t);

x=x+m; /*Apply the move m to the solution x*/

If x is valid solution

x= local optimum; /*S-metaheuristic*/

Output: Best solution found in the trajectory between s and t.

Intermediate operations: Do something at each step of

the path construction. E.g. find local optimum if valid

solution.

PATH RELINKING

DIRECTION

Algorithm 3.11 Template of the basic PR algorithm

InputStarting solution s and target solution t

x=s;

While dist(x,t)≠0 do

Find the best move m which decreases dist(x+m,t);

x=x+m; /*Apply the move m to the solution x*/

Output: Best solution found in the trajectory between s and t.

How to chose which solution that should be s and which t?

• Forward: From worst solution to best solution.

• Backward: From best solution to worst solution.

• Back and forward relinking: Both directions constructed in parallel (might not be

worth the effort).

• Mixed: Chose intermediate point as t and both ends as s. Compute both paths in

parallel.

PATH RELINKING

EXAMPLE: BINARY SEARCH SPACE

Move: Flip operator.

Distance: Hamming distance.

WWW.SICS.SE

