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ESTIMATION OF DISTRIBUTION ALGORITHMS

MAIN IDEA
• The population is represented by a probability distribution that is used to 

generate new individuals.

• Not yet competitive compared to more traditional metaheuristics.
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Example: A population of binary arrays 

can be represented by an array of 

probabilities that that entry is a 1.



ESTIMATION OF DISTRIBUTION ALGORITHMS

MAIN IDEA

Algorithm 3.4 Template of the EDA algorithm

t = 1;

Generate randomly a population of n individuals;

Initialise a probability model Q(x);

While Termination criteria are not met Do

Create a population of n individuals by sampling from Q(x);

Evaluate the objective function for each individual;

Select m individuals according to a selection methods;

Update the probabilistic model Q(x) using selected population and f() values;

t=t+1

End While

Output: Best found solution or set of solutions.
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ESTIMATION OF DISTRIBUTION ALGORITHMS

MAIN IDEA



Sometimes the variables interact. Then this should be 
included in the probability model.

1. Univariate EDA: No interaction between the problem 
variables are taken into account.

2. Bivariate EDA: Interactions between two variables defines 
the probability model

3. Multivariate EDA: Interactions between many variables 
defined the probability model.

ESTIMATION OF DISTRIBUTION ALGORITHMS

VARIABLE INTERACTION



Algorithm 3.5 Template of the PBIL algorithm

Initial distribution D=(0.5, … , 0.5);

Repeat

Repeat /*Generate population P of size n*/

Repeat /*For every entry i in D*/

r=Uniform[0,1]

If r<Di Then Xi = 1 Else Xi = 0

Until i=|D|

Until n

Evaluate and sort the population P; /*Find best offspring*/

Update the distribution D=(1-α)D+αXbest

Until Stopping Criteria

ESTIMATION OF DISTRIBUTION ALGORITHMS

EXAMPLE: POPULATIONBASED 

INCREMENTAL LEARNING, PBIL



DIFFERENTIAL EVOLUTION

Main idea
Example: DE/rand/1/bin
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Tuning



• When creating a new offspring: Use one main parent and a group of “other 
parents”. For each entry in the main parent vector, randomly choose whether 
to used main parent entry or new entry generated by the “other parents”.

• Very successful for continuous optimisation. All entries are bounded: lj ≤xij ≤uj

DIFFERENTIAL EVOLUTION

MAIN IDEA

Main Parent Green = other parents

r3 +F.(r1-r2)1

2

3
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MAIN IDEA
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DIFFERENTIAL EVOLUTION

EXAMPLE: DE/RAND/BIN
Algorithm 3.8 Template of the DE/rand/1/bin algorithm

Input: Parameters F (scaling factor) and CR (crossover constant).

Initialise the population (uniform random distribution);

Repeat

For (i=1, i ≤ k, i++) Do  /*Each individual*/

/*Mutate and recombine*/ 

jrand =int(randi[0,1]*D)+1;

For (j=1, j ≤ D, j++) Do 

If (randi[0,1]<CR) or (j=jrand )Then 

uij = xr3j +F.(xr1j -.(xr2j)

Else

uij = xij

End For 

*/Replace*/ 

If f(ui(t+1)) ≤f(ui(t))

xi(t+1) = ui(t+1)

Else

xi(t+1) = xi(t)

End For

Until Stopping Criteria

Output: Best population or solution found.



• Extreme strategies:

1. Set variable to violated bound

2. Randomly reinitialise value

• Intermediate strategy:

1. Set to midway between old value and violated 

bound.

DIFFERENTIAL EVOLUTION

REPAIR STRATEGY



• To get convergence:
• Increase number of parents, decrease F.

• To increase convergence speed (and decrease robustness):
• Increase CR

• DE much more sensitive to the value of F than the value of CR.

• From book: NP=10 times number of decision variables, CR=0.9, 
F=0.8

DIFFERENTIAL EVOLUTION

TUNING



COEVOLUTIONARY ALGORITHMS

Main idea

The Rosenbrock function: competetive coevolution
The Rosenbrock function: cooperative coevolution



• Cooperative or competitive strategy involving 

different populations. The fitness of an individual in 

a given population depends on the fitness of 

individuals in other populations.

COEVOLUTION ALGORITHMS

MAIN IDEA
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COEVOLUTION ALGORITHMS

MAIN IDEA
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COEVOLUTION ALGORITHMS

THE ROSENBROCK FUNCTION

• n populations with the individuals 𝑥𝑖
• Objective functions 𝑓𝑖(𝑥𝑖; 𝑥𝑖+1)
• Interaction/communication graph 𝐺𝑐𝑜𝑚𝑚 defined by relations 

between subcomponents.
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COEVOLUTION ALGORITHMS

THE ROSENBROCK FUNCTION - COMPETITIVE

• Nodes 𝑥𝑖 interact with nodes 𝑥𝑖+1.
• The coevlolving populations compete to minimize their local function. 



COEVOLUTION ALGORITHMS

THE ROSENBROCK FUNCTION - COMPETITIVE
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COEVOLUTION ALGORITHMS

THE ROSENBROCK FUNCTION - COOPERATIVE

• Interaction graph fully connected.

Algorithm
1. Initialize by randomly connecting individuals of populations and find a best solution 

𝐼𝑖
𝑏𝑒𝑠𝑡 for each population.

2. Repeat:

1. For each population: combine each individual with best individuals of all other 

populations. Find new best solution in active population.

2. For each population: match best individual with randomly selected individuals 

from other populations. 

3. For each population: Choose the best out of the two solutions. 

3. Construct complete solution from all best individuals from each population.



COEVOLUTION ALGORITHMS

THE ROSENBROCK FUNCTION - COOPERATIVE
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CULTURAL ALGORITHMS

Main idea



• Two main elements:

1. A population space at the mico-evolutionary level

2. A belief space at the macro-evolutionary level

• Good when solutions require extensive domain 

knowledge

CULTURAL ALGORITHMS

MAIN IDEA



CULTURAL ALGORITHMS

MAIN IDEA
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Symbolic resoning:

• Logic- and rule based reasoning models

• Schemata

• Graphical models

• Semantic networks

• Version spaces



CULTURAL ALGORITHMS

MAIN IDEA

Algorithm 3.9 Template of the cultural algorithm

Initialise the population Pop(0);

Initialise the belief BLF(0);

t = 0;

Repeat 

Evaluate the population Pop(t);

Adjust(BLF(t), Accept(Pop(t)));

Evolve(Pop(t+1), Influence(BLF(t)));

t=t+1

Until Stopping criteria

Output: Best found solution or set of solutions.



3.4 SCATTER SEARCH

Scatter search

Path relinking



SCATTER SEARCH

Main idea

Components



• Very many parents (aka reference set). Also, 

many parents can be used to generate new 

solutions.

• F. Glover. Heuristics for integer programming 

using surrogate constraints. Decision Sciences, 

8:156-166, 1977.

SCATTER SEARCH

MAIN IDEA



SCATTER SEARCH

MAIN IDEA
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SCATTER SEARCH

COMPONENTS Greedy procedures are 

applied to diversify the 

search while selecting 

high-quality solutions.

Any S-metaheuristic, 

normally local search.
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SCATTER SEARCH

COMPONENTS

Quality and diversity: Select 

RefSet1 with the best 

objective function and 

RefSet2 with best diversity.
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SCATTER SEARCH

MAIN IDEA Usually selects all the 

subsets of fixed size r (often 

r=2). It’s a deterministic 

operator.
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SCATTER SEARCH

MAIN IDEA
In the example it’s a cross-

over method. Pretty much 

anything that can take a 

subset and turn it into a 

solution.
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SCATTER SEARCH

MAIN IDEA

In the example it’s 

a local search 

method. 

Initial population

Improved 

population

Reference set Subsets

Generated 

solutions

Subset generation 

method

Solution 

combination 

method

Reference set 

update method

Improvement 

method

Generate 

reference

set

Create initial population 

(quality, diversity)

Improve the 

initial population

Improved generated 

solutions



Improved generated 

solutions

SCATTER SEARCH

MAIN IDEA
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In example: use same method as in 

“Generate reference set”. Use 

solutions in Reference set and 

Improved generated solutions.



PATH RELINKING

Main idea

Components

Directions

Example: Binary search space



• Find a path between two elite solutions (s and t), 

return best solution on this path.

• The solutions on the path will generally share 

attributes with s and t. 

PATH RELINKING

MAIN IDEA



PATH RELINKING

MAIN IDEA

Algorithm 3.11 Template of the basic PR algorithm

InputStarting solution s and target solution t

x=s;

While dist(x,t)≠0 do 

Find the best move m which decreases dist(x+m,t);

x=x+m; /*Apply the move m to the solution x*/

Output: Best solution found in the trajectory between s and t.



PATH RELINKING

COMPONENTS

Algorithm 3.11 Template of the basic PR algorithm

InputStarting solution s and target solution t

x=s;

While dist(x,t)≠0 do 

Find the best move m which decreases dist(x+m,t);

x=x+m; /*Apply the move m to the solution x*/

Output: Best solution found in the trajectory between s and t.

• Point with minimum distance to t.

• Point with best/worst objective function value.

• Use history of search (tabu search).



PATH RELINKING

COMPONENTS

Algorithm 3.11 Template of the basic PR algorithm

InputStarting solution s and target solution t

x=s;

While dist(x,t)≠0 do 

Find the best move m which decreases dist(x+m,t);

x=x+m; /*Apply the move m to the solution x*/

If x is valid solution

x= local optimum; /*S-metaheuristic*/

Output: Best solution found in the trajectory between s and t.

Intermediate operations: Do something at each step of 

the path construction. E.g. find local optimum if valid 

solution.



PATH RELINKING

DIRECTION

Algorithm 3.11 Template of the basic PR algorithm

InputStarting solution s and target solution t

x=s;

While dist(x,t)≠0 do 

Find the best move m which decreases dist(x+m,t);

x=x+m; /*Apply the move m to the solution x*/

Output: Best solution found in the trajectory between s and t.

How to chose which solution that should be s and which t?

• Forward: From worst solution to best solution.

• Backward: From best solution to worst solution.

• Back and forward relinking: Both directions constructed in parallel (might not be 

worth the effort).

• Mixed: Chose intermediate point as t and both ends as s. Compute both paths in 

parallel.



PATH RELINKING

EXAMPLE: BINARY SEARCH SPACE

Move: Flip operator.

Distance: Hamming distance.
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